Examples
This page provides examples of how to use Inference Gateway in various scenarios and environments.
Docker Compose Examples
Docker Compose provides a simple way to set up Inference Gateway with various configurations.
Basic Setup
A minimal setup with OpenAI integration:
YAML
services:
inference-gateway:
image: ghcr.io/inference-gateway/inference-gateway:latest
environment:
- OPENAI_API_KEY=your-api-key
ports:
- '8080:8080'
For more Docker Compose examples, check the official examples repository.
Kubernetes Examples
Deploy Inference Gateway on Kubernetes with these example configurations.
YAML
apiVersion: apps/v1
kind: Deployment
metadata:
name: inference-gateway
spec:
replicas: 2
selector:
matchLabels:
app: inference-gateway
template:
metadata:
labels:
app: inference-gateway
spec:
containers:
- name: inference-gateway
image: ghcr.io/inference-gateway/inference-gateway:latest
ports:
- containerPort: 8080
env:
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: llm-secrets
key: openai-api-key
For complete Kubernetes deployment examples including Services, ConfigMaps, and Secrets, visit the Kubernetes examples in the GitHub repository.
API Usage Examples
Create Chat Completions with OpenAI
Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openai/gpt-4o",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Explain how Inference Gateway works."
}
]
}'
Create Chat Completions with Anthropic
Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "anthropic/claude-3-5-sonnet-20241022",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Compare and contrast different LLM providers."
}
]
}'
Vision/Multimodal Image Processing
Process images with vision-capable models. First, enable vision support:
Terminal
ENABLE_VISION=true
Using HTTP Image URL
Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "anthropic/claude-3-5-sonnet-20241022",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
]
}'
Using Base64 Data URL
Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "anthropic/claude-3-5-sonnet-20241022",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What color is this pixel?"
},
{
"type": "image_url",
"image_url": {
"url": ""
}
}
]
}
]
}'
Supported Vision Models:
anthropic/claude-3-5-sonnet-20241022(Claude 4.5 Sonnet)anthropic/claude-3-5-haiku-20250219(Claude 4.5 Haiku)openai/gpt-4ogoogle/gemini-2.5-flashollama/llava- And more...
For more detailed examples and use cases, check out the full examples directory in the GitHub repository.