Examples

This page provides examples of how to use Inference Gateway in various scenarios and environments.

Docker Compose Examples

Docker Compose provides a simple way to set up Inference Gateway with various configurations.

Basic Setup

A minimal setup with OpenAI integration:

YAML
services:
  inference-gateway:
    image: ghcr.io/inference-gateway/inference-gateway:latest
    environment:
      - OPENAI_API_KEY=your-api-key
    ports:
      - '8080:8080'

For more Docker Compose examples, check the official examples repository.

Kubernetes Examples

Deploy Inference Gateway on Kubernetes with these example configurations.

YAML
apiVersion: apps/v1
kind: Deployment
metadata:
  name: inference-gateway
spec:
  replicas: 2
  selector:
    matchLabels:
      app: inference-gateway
  template:
    metadata:
      labels:
        app: inference-gateway
    spec:
      containers:
        - name: inference-gateway
          image: ghcr.io/inference-gateway/inference-gateway:latest
          ports:
            - containerPort: 8080
          env:
            - name: OPENAI_API_KEY
              valueFrom:
                secretKeyRef:
                  name: llm-secrets
                  key: openai-api-key

For complete Kubernetes deployment examples including Services, ConfigMaps, and Secrets, visit the Kubernetes examples in the GitHub repository.

API Usage Examples

Create Chat Completions with OpenAI

Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openai/gpt-4o",
    "messages": [
      {
        "role": "system",
        "content": "You are a helpful assistant."
      },
      {
        "role": "user",
        "content": "Explain how Inference Gateway works."
      }
    ]
  }'

Create Chat Completions with Anthropic

Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "anthropic/claude-3-5-sonnet-20241022",
    "messages": [
      {
        "role": "system",
        "content": "You are a helpful assistant."
      },
      {
        "role": "user",
        "content": "Compare and contrast different LLM providers."
      }
    ]
  }'

Vision/Multimodal Image Processing

Process images with vision-capable models. First, enable vision support:

Terminal
ENABLE_VISION=true

Using HTTP Image URL

Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "anthropic/claude-3-5-sonnet-20241022",
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": "What is in this image?"
          },
          {
            "type": "image_url",
            "image_url": {
              "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
            }
          }
        ]
      }
    ]
  }'

Using Base64 Data URL

Terminal
curl -X POST http://localhost:8080/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "anthropic/claude-3-5-sonnet-20241022",
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": "What color is this pixel?"
          },
          {
            "type": "image_url",
            "image_url": {
              "url": ""
            }
          }
        ]
      }
    ]
  }'

Supported Vision Models:

  • anthropic/claude-3-5-sonnet-20241022 (Claude 4.5 Sonnet)
  • anthropic/claude-3-5-haiku-20250219 (Claude 4.5 Haiku)
  • openai/gpt-4o
  • google/gemini-2.5-flash
  • ollama/llava
  • And more...

For more detailed examples and use cases, check out the full examples directory in the GitHub repository.